首页> 外文OA文献 >Random block coordinate descent methods for linearly constrained optimization over networks
【2h】

Random block coordinate descent methods for linearly constrained optimization over networks

机译:线性约束的随机块坐标下降方法   优化网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we develop random block coordinate gradient descent methods forminimizing large scale linearly constrained separable convex problems overnetworks. Since we have coupled constraints in the problem, we devise analgorithm that updates in parallel $\tau \geq 2$ (block) components periteration. Moreover, for this method the computations can be performed in adistributed fashion according to the structure of the network. However, itscomplexity per iteration is usually cheaper than of the full gradient methodwhen the number of nodes $N$ in the network is large. We prove that for thismethod we obtain in expectation an $\epsilon$-accurate solution in at most$\mathcal{O}(\frac{N}{\tau \epsilon})$ iterations and thus the convergence ratedepends linearly on the number of (block) components $\tau$ to be updated. Forstrongly convex functions the new method converges linearly. We also focus onhow to choose the probabilities to make the randomized algorithm to converge asfast as possible and we arrive at solving a sparse SDP. Finally, we describeseveral applications that fit in our framework, in particular the convexfeasibility problem. Numerically, we show that the parallel coordinate descentmethod with $\tau>2$ accelerates on its basic counterpart corresponding to$\tau=2$.
机译:在本文中,我们开发了随机块坐标梯度下降方法,以最小化网络上的大规模线性约束可分离凸问题。由于我们已经在问题中耦合了约束,因此我们设计了一种算法,可以并行更新$ \ tau \ geq 2 $(块)组件渗透。此外,对于该方法,可以根据网络的结构以分布式方式执行计算。但是,当网络中的节点$ N $数量较大时,其每次迭代的复杂度通常比全梯度方法便宜。我们证明,对于该方法,我们期望在最多$ \ mathcal {O}(\ frac {N} {\ tau \ epsilon})$次迭代中获得$ \ epsilon $准确的解决方案,因此收敛速度与数量成线性关系(块)组件$ \ tau $进行更新。对于强凸函数,新方法线性收敛。我们还将重点放在如何选择使随机算法尽可能快收敛的概率上,从而解决稀疏SDP。最后,我们描述了适合我们框架的所有应用程序,特别是凸可行性问题。在数值上,我们显示了带有$ \ tau> 2 $的平行坐标下降方法在其对应于$ \ tau = 2 $的基本对应点上加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号